Círculos Matemáticos por Gardner Martin - muestra HTML

TOME EN CUENTA: Esta es una vista previa en HTML y algunos elementos como enlaces o números de página pueden ser incorrectos.
Para la versión completa, descargue el libro en PDF, ePub, Kindle

index-1_1.jpg

Título original: Mathematical Circus

Traducción publicada por acuerdo con Alfred A. Knopf, Inc.

Traductor: Luis Bou

Primera edición en «El Libro de Bolsillo»: 1983

Segunda edición en «El Libro de Bolsillo»: 1985

© 1968, 1969, 1970, 1971, 1979 by Martin Gardner

© Ed. cast.: Alianza Editorial, S. A., Madrid, 1983, 1985

Calle Milán, 38; Teléfono 200 00 45

ISBN. 84-206-1937-X

Depósito legal: M. 4.344-1985

Papel fabricado por Sniace, S. A.

Fotocomposición: EFCA, S. A.

Impreso en Closas-Orcoyen, S. L. Polígono Igarsa

Paracuellos del Jarama (Madrid)

Printed in Spain

Escaneado por Dom

Para Donald E. Knoth, extraordinario matemático,

científico de computadores, escritor, músico, humorista,

entusiasta de las matemáticas recreativas y mucho más.

Circo matemático

Martin Gardner

Introducción

A veces estas reflexiones asombran todavía la noche

conturbada o el reposo a mediodía. -T. S. Eliot

Los capítulos que componen este libro fueron antes publicados en la sección mensual, fija, Juegos Matemáticos de la revista Scientific American. Los matemáticos me preguntan a veces, qué significa para mí semejante titulo. No es fácil de explicar.

Ya Ludwig Wingenstein utilizó la palabra «juego» para ejemplificar la noción de

«palabras-familia», imposibles de definir unívocamente. La idea de «juego» conlleva muchos significados, enlazados entre sí un poco a la manera en que lo están los miembros de una familia humana, significados que han ido concatenándose al tiempo que evolucionaba el lenguaje. Podemos decir que los «juegos matemáticos» o las

«matemáticas recreativas» son matemáticas -no importa de qué tipo- cargadas de un fuerte componente lúdico: pero poco aclaramos así, porque las ideas de «juego»,

«recreación» y «lúdico» son aproximadamente sinónimas. En último extremo nos encontramos con peticiones de principio, como al decir que la poesía es la obra de los poetas, o que la música de jazz es lo que los músicos de jazz componen o interpretan. Las matemáticas recreativas serían así la clase de matemáticas que hace disfrutar a los recreativistas.

Aunque no puedo definir los juegos matemáticos más rigurosamente que la poesía, sí mantengo que, sean lo que fueren, las matemáticas recreativas proporcionan el mejor camino para captar el interés de los jóvenes durante la enseñanza de la matemática elemental. Un buen rompecabezas matemático, una paradoja o un truco de apariencia mágica pueden excitar mucho más la imaginación de los niños que las aplicaciones

«prácticas», sobre todo cuando estas aplicaciones se encuentran lejanas de las experiencias vividas por ellos. Y si el «juego» se elige y prepara con cuidado, puede llevarle casi insensiblemente hasta ideas matemáticas de importancia.

No sólo los niños, sino también los adultos pueden quedar arrobados por uno de estos rompecabezas sin utilidad previsible, y la historia de las matemáticas está llena de trabajos sobre tales rompecabezas -tanto de profesionales como de aficionados-que han conducido hasta inesperados desarrollos. En su libro Mathematics: Queen and Servant of Science, Eric Temple Bell cuenta que los primeros trabajos sobre clasificación y enumeración de nudos apenas fueron considerados otra cosa que curiosidades y rompecabezas. La teoría de nudos ha venido, con el tiempo, a convertirse en rama floreciente de la Topología:

Así pues, los problemas de nudos resultaron ser mucho más que meros

rompecabezas. Y es frecuente que esto suceda en matemáticas, en parte porque los matemáticos replantean -no sin cierta perversidad- difíciles problemas que confiaron (mas no supieron) resolver, dándoles la forma de acertijos y charadas de apariencia trivial, pero en el fondo, con idéntica estructura que el problema original. Esta jugarreta ha hecho picar e interesarse a personas ajenas a las matemáticas, quienes, atemorizados ante la dificultad del problema, se habían inhibido o echado atrás. Y así, muchos aficionados han hecho a la matemática ricas aportaciones sin sospecharlo.

Tenemos un ejemplo en el problema de los quince escolares (1850) de T. P. Kirkman, que frecuentemente presentan los libros de matemáticas recreativas.

Tampoco faltan rompecabezas matemáticos que -por ser en realidad triviales- no conducen a desarrollos interesantes. Empero, ambos tipos tienen algo en común, que nadie ha expresado mejor que el distinguido matemático Stanislaw Ulam en su autobiografía, Adventures of a Mathematician:

Las matemáticas, con sus grandiosas panorámicas su apreciación de la belleza y su percepción de nuevas realidades, posee una propiedad adictiva que es menos evidente y saludable, afín en cierto modo a los efectos de algunas drogas. El más nimio problema, aún siendo inmediatamente reconocible como trivial o reiterativo, puede ejercer esta influencia adictiva. Una de las formas en que podemos vernos arrastrados es comenzar a resolverlos. Recuerdo que Mathematical Monthly publicaba de cuando en cuando unos problemas enviados por un matemático francés, relativos a ciertas configuraciones banales de circunferencias, rectas y triángulos del plano.

«Belanglos» (sin importancia), como dicen los alemanes; empero, con estas figuritas corríase el riesgo de quedar atrapado tan pronto se comenzaba a resolverlas, a pesar de saber perfectamente que no podrían conducirnos a campos nuevos, más generales ni más estimulantes. Mucho contrasta esto con cuanto he dicho acerca de la historia del teorema de Fermat, que ha suscitado la creación de nuevas y vastas concepciones algebraicas. La diferencia tal vez resida en que para resolver un pequeño problema puede bastar un esfuerzo moderado, mientras que el teorema de Fermat sigue sin estar resuelto, desafiando al mundo matemático. No obstante, ambos tipos de curiosidades matemáticas tienen una fuerte componente adictiva para el matemático en potencia, cualidad que existe a todos los niveles de la matemática, desde las bagatelas a los aspectos más inspirados.

Martin Gardner

Marzo de 1979

Capítulo 1

Ilusiones ópticas

Las ilusiones ópticas -figuras, objetos o sucesos que no son lo que aparentan al ser percibidos- han tenido y tienen todavía importante papel en las bellas artes, en matemáticas, en psicología e incluso en filosofía. Los antiguos griegos deformaron las columnas del Partenón con el fin de que parecieran perfectamente rectas al ser vistas desde el suelo por la gente. En sus grandes obras murales, los pintores renacentistas solían distorsionar las figuras con objeto de que, miradas desde abajo, parecieran ser de proporciones normales. El interés de los matemáticos por las ilusiones ópticas se debe a que muchas de ellas guardan relación con la perspectiva (una rama de la geometría proyectiva) y con otras cuestiones geométricas. Los psicólogos estudian las ilusiones para saber cómo interpreta el cerebro los datos que le llegan a través de los sentidos. Y los filósofos de diversas escuelas de realismo directo, que mantienen que nosotros percibimos objetos reales externos a nuestras mentes, tienen el problema de explicar cómo pueden entonces presentarse errores de percepción.

Consideradas en su aspecto menos serio, las ilusiones visuales son, sencillamente, divertidas. Disfrutamos sabiéndonos engañados por ellas, por motivos que no se diferencian mucho del placer de ser confundidos por un ilusionista. Las ilusiones nos recuerdan que el ancho mundo exterior no siempre es lo que parece. Nos fijaremos en este capítulo en unas cuantas ilusiones ópticas no demasiado conocidas, que exhalan todas ellas fuerte aroma matemático.

Los procesos de que el cerebro se vale para interpretar los datos visuales son tan complejos y poco conocidos, que no es milagro que en sus explicaciones los psicólogos mantengan opiniones divergentes, cuando no contradictorias, incluso para las ilusiones más sencillas. Entre las más clásicas están el aumento aparente del sol, la luna y las constelaciones cuando están cerca del horizonte. El difunto Edwin G.

Boring, de la Universidad Harvard escribió numerosos artículos explicando que la

«flusión de la luna» se debe fundamentalmente a la acción de alzar la mirada. Una opinión diferente, que se remonta hasta Ptolomeo, es defendida por Lloyd Kaufman e Irvin Rock en su artículo « The Moon Illusion», en Scientific American de julio de 1962.

Su teoría, basada en el efecto de «distancia aparente», es a su vez refutada por Frank Restle en un trabajo publicado en Science del 20 de febrero de 1970.

La opinión actual es que casi todas las ilusiones ópticas se originan en el cerebro, cuando éste va explorando su memoria en busca de lo que Richard L. Gregory denomina «la apuesta óptima», es decir, la interpretación que mejor explique los datos visuales a partir de las experiencias acumuladas por el cerebro. Tal punto de vista está sustentado por el reciente descubrimiento de que muchos animales, entre ellos aves y peces, sufren ilusiones que podrían ser explicadas de esta forma y también, por trabajos de antropología en culturas marcadamente diferentes de la nuestra. Los zulúes, por ejemplo, viven inmersos en un mundo de formas redondeadas. Las cabañas son redondas, y también lo son sus puertas.

Al arar, sus surcos trazan líneas curvas. Raramente tienen ocasión de ver líneas o ángulos rectos, y su idioma no contiene ningún vocablo que signifique «cuadrado».

Así nos lo dice John Updike en la segunda estrofa de su poema « Zulus Live in Land Without a Square»:

Cuando los zulúes sonreir no pueden,

ceñudos fingen enojos,

para siempre tener curvas

frente a los ojos.

Y las distancias entre lugares y cosas

se calculan «a vuelo de mariposa»...

Diversos estudios recientes han mostrado que ciertas ilusiones relativas a rectas paralelas y esquinas en ángulo, figuras que con tanta frecuencia observamos en el mundo rectangular de las sociedades tecnológicamente adelantadas, difícilmente son percibidas por los zulúes. Los filósofos John Locke y George Berkeley se preguntaron ambos si un ciego de nacimiento que súbitamente recuperase la vista sabría distinguir, sin tocarlos, cuál de dos objetos era un cubo y cuál una esfera. Locke y Berkeley respondieron que no. Una obra de Gregory, Eye and Brain, resume estudios recientes en esta misma dirección, y aunque no se llega a conclusiones tajantes, sí parece dar la razón a aquellos filósofos, aportando de nuevo pruebas que justifican el enfoque moderno, a saber, que casi todas las ilusiones ópticas se deben a que el cerebro interpreta erróneamente los datos que recibe.

El descubrimiento de figuras «indecidibles» ha suscitado nuevos y entretenidos desarrollos en la teoría de las ilusiones visuales. Las figuras indecidibles representan objetos que no pueden existir. La mente, incapaz de encontrarles pies ni cabeza, queda sumída en un estado de curiosa perplejidad. (Son figuras que recuerdan proposiciones indecidibles, como «Esta proposición es falsa», o «No te lo pierdas si puedes».) Entre las figuras indecidibles, la más conocida es el notable « blivet» (que un americano pronunciaría casi igual que « believe it», «créalo») de tres columnas (¿o sólo dos?) que vemos en la Figura 1.

index-8_1.png

Las primeras versiones empezaron a circular entre ingenieros y proyectistas hacia 1964, y la portada del número de marzo de 1965 de la revista Mad mostraba a un Alfred E. Neuman sonriente y haciendo equilibrios con el blivet sobre su dedo índice.

Roger Hayward ha publicado un artículo sobre « Blivets: Research and Development»

[Investigación y desarrollo de los blivets] en The Worm Runners Digest (diciembre de 1968), donde presentaba algunas variantes (véase la Figura l).

Otra conocida figura indecidible es una escalinata cuadrada por la que se puede ascender o descender indefinidamente sin por ello subir ni bajar. Puede verse en una

index-9_1.png

litografía de Maurits C. Escher titulada «Ascendiendo y descendiendo», que data de 1960, así como en otra litografía del mismo artista, de 1961, que representa un salto de agua haciendo funcionar una máquina de movimiento perpetuo. Esta

desconcertante ilusión, creada por el genetista inglés L. S. Penrose y por su hijo, el físicomatemático Roger Penrose, fue inicialmente publicada en un artículo de ambos,

« Imposible Objects: A Special Type of Visual Illusion» [Un tipo especial de ilusiones visuales: los objetos imposibles], en The British Journal of Psychology (febrero de 1958, pp. 31-33).

Estos mismos dos autores se sirvieron otra vez de ella en su colección de originales

«rompecabezas navideños» publicada en The New Scientist (25 de diciembre de 1958, pp. 1580-81). Admitiendo (véase la Figura 2) que hagan falta tres peldaños para ir desde A, en el suelo, hasta lo alto del escalón B, ¿cómo se puede ir desde A hasta C sin subir más de 10 escalones? La solución sólo es posible porque la propia estructura dibujada no lo es.

Un tercer objeto imposible también muy conocido es la armazón del cubo sostenido por la figura sedente de otra famosa litografía de Escher, que puede verse en la página 110 de mi Carnaval matemático. La sección de «Cartas» de Scientific American reproducía una fotografía de esta «Canasta de acceso libre» (así fue llamada) en el número de junio de 1966; en realidad aquella fotografía se obtuvo retocando el negativo. No obstante, sí es posible construir un modelo real que visto desde un ángulo adecuado nos dé una auténtica fotografía de la «canasta». Su construcción ha sido explicada por William G. Hyzer en Photo Methods for Industry, enero de 1970.

index-10_1.png

Vemos en la Figura 3 el modelo de Hyzer. Si lo giramos y ladeamos hasta que, observándolo con un solo ojo, los huecos coincidan con toda exactitud con dos travesaños traseros del armazón, el cerebro se convence de que las aristas traseras están delante, produciendo la imagen mental de un cubo imposible.

Muchas otras curiosas ilusiones son debidas a que poseemos dos ojos. Extienda los brazos ante sí, manteniendo los dedos índices de ambas manos estirados horizontalmente, con las puntas en contacto. Mirando más allá de los dedos, enfoque la mirada sobre una pared distante, y separe los dedos ligeramente. Verá entonces una «salchicha flotante» entre los dedos. Como es obvio, la salchicha está formada por las imágenes superpuestas de las yemas de los dedos, vistas cada una por distinto ojo. Otra antigua ilusión, también debida a la visión binocular, se produce acercando un tubo (es suficiente una hoja arrollada de papel) a un ojo, como si fuera un telescopio. Supongamos que llevamos el tubo al ojo derecho; la mano izquierda, con la palma vuelta hacia uno mismo, se coloca verticalmente pegada al borde izquierdo del tubo. Deslizando hacia adelante y hacia atrás la mano izquierda a lo largo del tubo, con los dos ojos abiertos y mirando algún objeto distante, se encontrará un punto donde parecerá que estamos mirando a través de un agujero recortado en el centro de la mano izquierda.

En ciertas circunstancias, también la visión monocular puede crear una ilusión de profundidad. Mirando una fotografía con un solo ojo a través de un tubo se produce un ligero efecto de tridimensionalidad. Una de las más llamativas ilusiones de la visión monocular puede verse en la Figura 4.

index-11_1.png

Es necesario inclinar el libro hacia atrás, hasta que el plano de la página quede casi enrasado con la vista. Mirando la figura con un solo ojo desde un punto próximo al borde inferior de la página, aproximadamente donde convergerían los clavos si fuesen prolongados hacia abajo, durante un breve instante los clavos parecerán ponerse en pie. William James, en el Capítulo 19 del Volumen 2 de sus famosos Principles of Psychology, tras dar una excelente explicación de esta ilusión, añade esta sucinta coletilla, que resume las ideas actuales sobre la percepción: «Dicho con otras palabras, nosotros vemos, como siempre, el objeto más verosimil.»

El llamado «péndulo de Pulfrich» es otra asombrosa ilusión binocular, que recibe su nombre de su descubridor, Carl Pulfrich, quien la dio a conocer en 1922, en una revista alemana. El péndulo está formado, sencillamente, por un trozo de hilo, que puede tener desde unos 30 cm hasta más de un metro. De él pende un objeto pequeño. Pídale a otra persona que sostenga la punta libre del cordel, y que mantenga el péndulo en oscilación en un plano perpendicular al de su línea de visión.

Sitúese usted en el otro extremo de la habitación, frente al péndulo, que se habrá de observar con ambos ojos. Con uno se mira directamente; con el otro, a través de uno de los cristales de unas gafas de sol. Es preciso fijar la mirada en el punto medio de la oscilación; la vista no debe ir siguiendo a la plomada en su vaivén. ¡Parecerá entonces que el peso describe una órbita elíptica! Trasladando al otro ojo el cristal oscuro, el peso seguirá describiendo la misma órbita elíptica, pero ahora recorrida en sentido contrario. Tan fuerte es la ilusión de profundidad, que colocando por detrás del plano de oscilación un objeto grande parece como si el plomo pasase en realidad a través del objeto, como un fantasma.

Gregory explica la ilusión de Pulfrich diciendo que el ojo adaptado a la oscuridad envía sus señales al cerebro más lentamente que el ojo descubierto. Este desfase entre las señales induce al cerebro a interpretar el movimiento del plomo como si alternativamente fuese pasando por delante y por detrás de su plano de oscilación.

Pueden experirnentarse sensaciones de profundidad parecidas al mirar imágenes de televisión, cubriendo un ojo con un cristal oscuro o mirando con uno de los ojos a

index-12_1.png

través de un pequeño orificio perforado en cartulina. Cuando en la pantalla aparece una imagen que se desplaza horizontalmente con cierta velocidad, el observador tendrá la impresión de que lo hace por delante o por detrás de la pantalla. Esta ilusión animó a varias compañías a anunciar, en 1966, unas gafas especiales que, de creer a la publicidad, permitirían al espectador ver en tres dimensiones las imágenes planas de su televisor. El precio era elevado, pero evidentemente las gafas no eran sino una montura barata provista de dos lentes de plástico, una transparente y otra oscura.

Otra conocida categoría de figuras ilusorias, muy analizadas por la escuela psicológica de la Gestalt, está formada por imágenes que pueden ser interpretadas de dos maneras con probabilidades iguales o casi iguales. La mente fluctúa entre ambas interpretaciones, incapaz de decidir cuál es la apuesta óptima. Probablemente el ejemplo más conocido sea el apilamiento de cubos que se invierte repentinamente, haciendo cambiar el número de cubos que parecen formarlo. En estos últimos años todos hemos tenido dificultades de interpretación al contemplar fotografías de cráteres lunares y no poderlos ver como montañas, sobre todo si invertimos la fotografía, con lo que los cráteres se ven iluminados desde abajo por la luz solar, ángulo de iluminación que raramente habremos tenido ocasión de experimentar.

Hay una figura de un jarrón oscuro cuya silueta puede ser imaginada como los perfiles de dos caras. Una ilusión parecida saltó inesperadamente a la palestra en la nueva bandera canadiense, adoptada oficialmente en 1965 tras varios meses de disputas parlamentarias. Fije usted la atención en el fondo blanco, por encima de la hoja de arce (véase la Figura 5).

Se verán entonces los perfiles de dos hombres malhumorados (¿quizás un liberal y un conservador?) con las frentes en contacto, zahiriéndose (¿uno en francés y otro en

index-13_1.png

inglés?). En cuanto haya usted localizado estas dos caras, ya no tendrá dificultad en descifrar el significado de los polígonos de formas irregulares que en bloques negros podemos ver en la Figura 6.

Otra figura muy estudiada es el cubo de Necker, así llamado en honor del suizo L. A.

Necker, quien escribió acerca de él allá por 1830. El cubo tiene la propiedad de invertirse al observarlo. Los Penrose, en los acertijos navideños ya mencionados, tuvieron la feliz idea de añadir un escarabajo al «cubo», en este caso una caja rectangular. (Véase la Figura 7.) El insecto parece encontrarse en la pared exterior.

Pero si fijamos la mirada en el ángulo inferior izquierdo de la caja, y con la imaginación nos esforzamos en pensar que esa es la esquina más cercana, de repente, ¡flip, flop!, el insecto queda encerrado en su jaula, transportado por la acción del pensamiento.

index-14_1.png

Con tres monedas podemos poner de manifiesto otra sorprendente ilusión, seguramente relacionada con la ilusión de Müller-Lyer (dos segmentos de longitudes iguales que parecen ser de tamaños distintos a causa de las puntas de flecha trazadas en sus extremos: en una de las figuras apuntan hacia afuera y en la otra hacia adentro). Se colocan las monedas en fila (véase la Figura 8) y se le pide a otra persona que haga deslizar hacia abajo la moneda central hasta que la distancia AB

sea igual a la distancia CD. Casi nadie separa la moneda lo suficiente; en realidad, cuesta creer que la solución correcta sea la dada en la ilustración. El truco puede repetirse con monedas mayores, mesitas circulares, vasos de agua y objetos parecidos.

index-15_1.png

La ilusión de la «moneda fantasma», que vemos en la Figura 9, es más conocida por los ilusionistas que por los psicólogos. Sostenga una contra otra dos monedas entre las yemas de los dedos índices y frótelas rápidamente una contra otra. Aparecerá entonces una tercera moneda, la moneda fantasma. ¿Pero por qué solamente por un extremo y no por el otro?

index-16_1.png

Soluciones

Para subir hasta lo alto de la escalera de Penrose en sólo 10 pasos, se suben cuatro peldaños, se gira a la derecha, se suben otros tres escalones más, se recorre la ronda de forma de U, se bajan tres peldaños, y se suben otros tres, llegando así a lo alto.

Aunque nunca he visto impresa ninguna explicación del efecto de la moneda fantasma, he recibido de muchos lectores una tan convincente que no dudo tiene que ser correcta. Al frotar las monedas, adelante y atrás, como se ha explicado, el ángulo que forman los dedos hace que las monedas tiendan a diverger en la posición adelantada, creando allí dos imágenes claramente distintas. Por el contrario, en la parte trasera, donde los dedos forman una V, el ligero movimiento lateral provoca que en la posición retrasada las monedas tiendan a converger, y que sus imágenes se superpongan. La consecuencia es que las imágenes delanteras, individuales, son débiles, mientras que las traseras se refuerzan la una a la otra, creando una imagen única, más intensa.

Los propios lectores describieron diversas formas sencillas de comprobar esta teoría.

Por ejemplo, Marjorie Lundquist y S. H. Norris propusieron el siguiente experimento.

Vuelva las palmas hacia afuera, con los pulgares señalando hacia usted, sosteniendo dos monedas entre las puntas de los dedos y frotándolas, la imagen fantasma se forma en la V de los pulgares, en el sentido de alejarse del experimentador. Y así es como deberíamos esperar que sucediese, pues a causa de los ligeros movimientos laterales, la superposición tiende a producirse en el lado más alejado. Si los dedos se colocan no formando una V, sino directamente opuestos uno a otro, en línea recta, los desplazamientos laterales son iguales en ambos lados, y se ven dos monedas fantasmas. La misma imagen fantasma, simétrica y doble, se producirá cuando las monedas se sujeten con los índices, pero en lugar de frotarlas adelante y atrás lo hagamos de arriba a abajo, verticalmente.

Otra llamativa confirmación de la teoría, que descubrí por mí mismo, se obtiene frotando rápidamente las yemas de los dedos, adelante y atrás, sin moneda ninguna entre ellos. La divergencia por la parte delantera y la superposición por la trasera son evidentes. ¡Se verá un dedo fantasma dentro de la V, con el filo de una uña justo en su centro!

La ilusión de la moneda fantasma puede convertirse fácilmente en un truco de prestidigitación. Se comienza ocultando una moneda no muy grande en los pliegues de la palma de la mano derecha. Se le pide a un espectador que nos preste dos monedas, que sujetaremos entre las yemas de los dedos pulgar e índice de la mano derecha. Se frotan las monedas rápidamente, para crear la imagen fantasma, al tiempo que con la mano se mantiene oculta la moneda escondida en la palma.

Cuando ya se aprecie la imagen fantasma, se hace gesto de atraparla, cerrando rápidamente el puño, para después abrir la mano y demostrar que el fantasma se ha materializado, convirtiéndose en una moneda contante y sonante.

index-18_1.png

Capítulo 2

Cerillas

Las cerillas, sean de papel o de madera, tienen dos propiedades que las hacen idóneas para divertimentos matemáticos. Pueden servir de «cuentas» y también de segmentos de longitud unidad. La recopilación de todos los pasatiempos con cerillas ocuparía un grueso volumen. En este capítulo nos fijaremos en unas cuantas muestras representativas de los trucos, juegos y acertijos que se pueden realizar con cerillas.

Todos los ilusionistas conocen el viejo truco «del piano» (así llamado por la posición de las manos del espectador) que puede anunciarse como un intercambio mágico de par a impar. Se le pide a un espectador que coloque las manos sobre la mesa, palmas abajo. Entre cada par de dedos contiguos insertamos dos cerillas, excepto entre los dedos anular y meñique de una mano, donde sólo colocaremos una (véase la Figura 10).

Ahora iremos retirando uno por uno los pares de cerillas, separando las cerillas de cada par, que iremos colocando sobre la mesa, una frente a cada una de las manos del espectador. En cada extracción el mago repite «Dos cerillas», y de este modo, formando un montoncito de cerillas frente a cada mano, hasta que sólo quede la cerilla desemparejada. Se retira esta cerilla de la mano del paciente espectador, y sosteniéndola en alto, se dice: «Tenemos ahora dos montones de cerillas, formados ambos por pares. ¿En qué montón quiere que ponga esta cerilla suelta?» La cerilla se coloca donde nos indiquen.

Señale usted el montoncito donde quedó la cerilla extra, y diga: «En este montón hay una cerilla de más.» Y señalando el otro: «Y aquí hay un montón formado por pares de cerillas.» Se dan entonces unos cuantos pases mágicos sobre los montones y se anuncia que con ellos la cerilla desemparejada se verá obligada a pasar al otro montón. Para demostrar que verdaderamente así ha ocurrido,

«contamos» las cerillas del grupo donde pusimos la última, apartándolas de dos en dos, y dejándolas en un lado. Escribimos «contar», entrecomillado, porque en realidad no se las cuenta. En vez de eso, vaya diciendo tan sólo «dos cerillas» cada vez que las aparte del montón. El montón estará formado justamente por pares, y por ello, al final no quedarán cerillas desemparejadas. Se «cuenta» el otro montón de igual manera. Al retirar el último par quedará todavía una cerilla suelta. Un poco de palique en tono convincente bastará para dejar perplejo a casi todo el mundo. El truco funciona por sí solo, sin especial habilidad del mago, y el lector que lo ensaye un poco comprenderá inmediatamente por qué.

En la primera recopilación conocida de cuestiones y problemas de matemática recreativa, Problémes plaisans et délectables, de Claude Gaspar Bachet, publicado en Francia en 1612, podemos ver un truco que se remonta a tiempos medievales. La versión clásica es como sigue.

Se disponen sobre la mesa 24 cerillas y tres objetos pequeños, una moneda, un anillo y una llave, por ejemplo. Se pide colaboración a tres espectadores.

Designémoslos 1º 2º y 3º. Para estar seguro de recordar el orden en que han sido llamados (les dice usted) le da una cerilla a su primer ayudante, dos al segundo, y tres al tercero. Estas cerillas se toman de las 24 que hay en la mesa, con lo cual queda un montoncito de 18 fósforos. Se dice a los ayudantes que se guarden en un bolsillo las cerillas que han recibido.

Vuélvase de espaldas para no ver lo que sucede, y pídale al espectador número 1

que coja uno de los tres objetos y se lo guarde en el bolsillo. El segundo espectador toma uno de los dos objetos restantes, y el tercer espectador, el único que todavía queda. Pídale ahora a la persona que tomó la moneda que retire de la mesa tantas cerillas como inicialmente recibió, y que las guarde en el puño. (Usted no tiene forma de saber quién es, pues está vuelto de espaldas.) Dígale a la persona que haya cogido el anillo que recoja de la mesa doble número de cerillas de las que recibió, y que las guarde en el puño. Pídale al que cogió la llave que tome cuádruple de su número de cerillas, y que las guarde también.

Entonces se vuelve usted hacia sus ayudantes, y tras fingir durante unos instantes concentrarse para lograr percepción extrasensorial, le dice a cada uno el objeto que ha elegido. La clave reside en el número de cerillas que aún quedan en la mesa. Hay seis permutaciones posibles de los tres objetos tomados por los espectadores; cada una de ellas deja en la mesa distinto número de cerillas sobrantes.

index-20_1.png

Denotemos los objetos P, M y G (pequeño, mediano, y grande); la tabla de la Figura 11 muestra la permutación correspondiente a cada posible colección de cerillas residuales. (Es imposible que sobren cuatro cerillas. Si viera usted que sobre la mesa quedan cuatro cerillas, alguien se ha equivocado o ha hecho trampa, y es preciso repetir el truco). Se han construido docenas de frases mnemotécnicas para facilitar al mago la tarea de averiguar cómo están distribuidos los objetos. Bachet marcó los objetos con las letras a, e, i, las tres primeras vocales, y construyó la siguiente frase, en francés: (1) Par fer (2) César (3) jadis (5) devint (6) si grand (7) prince. Las dos vocales de cada palabra o frase bastan para dar la información necesaria. Por ejemplo, si el mago ve cinco cerillas sobre la mesa, la quinta palabra,

«devint», le dice que el objeto e fue tomado por el primer espectador (quien recibió una cerilla) y el objeto i por el segundo (quien tenía dos cerillas). El objeto restante aí debe encontrarse en el bolsillo del tercer espectador, a quien se le dieron tres cerillas al comienzo del truco.

Otros ilusionistas del siglo XVII, recurriendo también a las tres vocales para designar los objetos, prefirieron recordar las seis permutaciones ayudándose de las dos primeras vocales de cada palabra de la siguiente frase latina: Salve certa animae semita vita quies.

En la versión presentada aquí, donde los objetos han sido designados P, M y G, podemos usar la siguiente frase mnemotécnica: (1) P im pantes (2) m ap as (3) p leg aba [(4) con] (5) m ag níficas (6) g rap as (7) g em elas. Las dos primeras apariciones de las letras clave, que están en negrita, nos dicen los dos objetos tomados por el primer y segundo espectadores, respectivamente; el tercer objeto corresponde necesariamente al tercer espectador. El lector puede pasar un rato entretenido componiendo otras frases de su invención. Para designar los objetos pueden usarse otras letras, como A, B y C o L, M, P (ligero mediano, pesado), las iniciales de los objetos utilizados, etc. Conviene introducir en la frase una cuarta palabra, de relleno, como hicimos antes, no obstante ser imposible que sobren cuatro cerillas, pues ello permite al ilusionista contar rápidamente las cerillas señalando cada una con una palabra de la frase, sin tener que preocuparse de saltar el número cuatro cuando hayan quedado más de tres. El truco admite una interesante generalización, que data de 1893, para n objetos y n espectadores, fundado en el sistema de numeración de base n. Puede verse en Mathematical Recreations and Essays, de W. W. Rouse Bail (página 30 de la edición revisada, 1960).

Un truco telepático más reciente se sirve de un poco de teoría elemental de números (que todavía algunos llaman aritmética) y de una carterita pequeña de 20 cerillas de papel. Vueltos de espaldas, le pedimos a un espectador que arranque del sobre un número cualquiera de cerillas, de 1 a 10, y que se las guarde en un bolsillo. Dígale entonces que cuente para sí el número de las restantes, y que sumando las dos cifras de ese número, arranque de la carterita otras tantas cerillas. (Por ejemplo, si hubiesen quedado 16 cerillas, tendría que sumar 1 y 6, y arrancar 7 fósforos más.) Estas cerillas debe también guardarlas en el bolsillo. Finalmente, el espectador arranca unas cuantas cerillas más, a su capricho, y las guarda en el puño. Entonces se vuelve usted y recoge la carterita, contando de una ojeada el número de cerillas sobrantes al tiempo de guardársela en el bolsillo. Y ahora podemos decir el número de cerillas que el espectador oculta en su puño. En efecto, tras las dos primeras operaciones siempre sobran en el sobre nueve cerillas. (¿Sabría usted decir por qué?) Bastará por tanto restar de 9 el número de cerillas restantes en el sobrecito para saber el número de las ocultas en la mano.

Las cerillas pueden ser útiles en diversidad de juegos que, como el nim, se desarrollan retirando fichas o cuentas, o en ciertos juegos de apuestas, como el de

«los chinos». Pero resultan particularmente adecuadas para el que ahora explicaremos, tanto por su forma como por la facilidad de tenerlas de varios colores.

El juego fue inventado por Jurg Nievergelt, matemático especialista en cálculo automático, quien lo ha bautizado «Hit-and-Run». Por lo general la partida se desarrolla sobre una matriz cuadrada de orden 4 (véase la Figura 12).

index-22_1.png

Los jugadores disponen inicialmente de unas carteritas de 20 cerillas, cuyas cabezas han de ser de distintos colores, gris y negro, por ejemplo. No deja de ser grata coincidencia que las 40 cerillas de que disponen sean precisamente el máximo necesario. Los jugadores van por turno colocando cada uno una cerilla en uno cualquiera de los segmentos de la matriz. Las negras se proponen construir un camino que conecte los dos lados negros del tablero; las grises lo mismo con los otros dos lados. (Los caminos contrarios pueden cortarse en ángulos rectos). El primer jugador que consiga construir un camino gana la partida. El juego se llama

«Hit-and-Run», porque cada jugada puede servir tanto para bloquear un camino del adversario (un «hit» en béisbol) como para, al mismo tiempo, prolongar un camino («run»).

El juego tiene superficialmente cierto parecido con el Hex de Piet Hein y con variantes posteriores, como el Bridg-it y el Twixt (puede verse el Bridg-it en Nuevos

index-23_1.png

pasatiempos matemáticos, de Martin Gardner, Alianza Editorial, Madrid), pero la estructura matemática subyacente a él es profundamente diferente. Al igual que para el «tres en raya», puede demostrarse fácilmente que si el primero en jugar actúa racionalmente, toda partida de «Hit-and-Run» acabará ya en victoria de éste, ya en tablas. Supongamos que existiera alguna estrategia que diera siempre la victoria al segundo en jugar. El primer jugador podría entonces apropiársela haciendo un primer movimiento intrascendente, y siguiendo en lo sucesivo la estrategia de victoria. La jugada de espera es en todo caso una ventaja, nunca un inconveniente.

Si la estrategia ganadora exigiese más tarde realizar una jugada de espera, como la jugada ha sido realizada ya se efectúa una segunda jugada intrascendente. De esta forma el primer jugador puede ganar. Pero así contradecimos la hipótesis inicial. Por tanto, para el segundo jugador no puede existir una estrategia capaz de garantizarle la victoria. En consecuencia, el primer jugador puede siempre vencer o empatar, si bien la demostración no da información ninguna sobre la táctica a seguir para lograrlo.

En un cuadrado de orden 2 se ve fácilmente que el primer jugador tiene siempre asegurada la victoria (parte izquierda de la Figura 13). El primer movimiento de las negras N1 obliga a las grises a replicar G1. Haciendo N2, las negras se encuentran en situación de completar su camino en una jugada más, y esto de dos formas posibles (marcadas N3); las grises no tienen ahora manera de impedir la victoria negra en la jugada siguiente. Las negras pueden ganar de forma parecida saliendo en cualquiera de los seis tramos verticales.

Los lectores podrían entretenerse en demostrar que en el cuadrado de orden 3

también el primer jugador (negras) puede ganar siempre la partida ocupando en la salida cualquiera de los segmentos marcados N1 (parte derecha de la Figura 13).

Nievergelt llegó a esta conclusión estudiando exhaustivamente todas las posibilidades. Como este análisis es largo y tedioso, no lo expondremos aquí. Por lo que yo sé, se ignora todavía si en tableros de orden 4, y no digamos más alto, el primer jugador dispone de estrategia de victoria.

También pueden usarse cerillas de dos colores para jugar a Connecto, descrito por David L. Silverman en su libro Your Move (McGraw-Hill, 1971). También aquí dos jugadores van por turnos colocando cerillas en una matriz cuadrada de tamaño

index-24_1.png

arbitrario, pero el objetivo es ahora ser el primero en delimitar una región cerrada de forma cualquiera cuya frontera esté formada por cerillas del color propio.

En la Figura 14 las negras han ganado la partida. ¿Sabrá usted descubrir una sencilla estrategia -dada ya por Silverman- mediante la cual el segundo jugador puede siempre impedir la victoria del primero, incluso sobre matrices infinitas?

Para terminar, he aquí seis entretenidos pasatiempos con cerillas (véase la Figura 15):

index-25_1.png

1. Retirando once cerillas, dejar seis.

2. La disposición de seis cerillas que vemos define un mapa planar que requiere tres colores si se exige que ningún par de regiones con una cerilla frontera común estén coloreadas del mismo tono. El problema consiste en redisponer las seis y formar un nuevo mapa planar que precise de cuatro colores. Al estar el mapa confinado al plano hay que descartar la sencilla solución tridimensional consistente en el esqueleto de un tetraedro.

3. Cambiando de posición dos cerillas hay que reducir de 5 a 4 el número de cuadrículas unitarias de la figura. No es lícito dejar «cabos sueltos» -es decir, cerillas no utilizadas como lados de un cuadrado. Una notable característica de este clásico problemita es que, incluso una vez resuelto, podemos volverlo del revés, volverlo cabeza abajo, o ambas cosas, y seguirá siendo casi tan difícil de resolver como lo era inicialmente.

4. En la disposición de la figura es cosa fácil dejar sólo dos triángulos equiláteros retirando cuatro cerillas. Tampoco es dificil lograr lo mismo eliminando tres. ¿Pero sabrá el lector suprimir sólo dos cerillas y dejar dos triángulos equiláteros? Como antes, tampoco deben quedar cabos sueltos.

5. Moviendo solamente una cerilla debemos lograr una igualdad verdadera. No es válido tachar el signo «igual» con una cerilla y obtener una desigualdad verdadera; la expresión final debe ser una auténtica igualdad.

6. Moviendo solamente una cerilla hay que formar un cuadrado. (La vieja broma de deslizar uno o dos milímetros hacia arriba la cerilla central superior, y dejar en el centro de la cruz un minúsculo hueco cuadrado no es válida. La solución también es humorística, pero la broma va ahora por muy distinto camino.)

Apéndice

En el texto, al describir los dos juegos con cerillas hemos supuesto que sus cabezas son de distinto color; pero si encontrásemos carteritas donde las cerillas -y no sólo sus cabezas- fueran de colores diferentes, seria todavía mejor. Y como es natural, ambos pueden jugarse sobre papel, dibujando una matriz de puntos a conectar con trazos rectos de dos colores.

Nievergelt ha hecho notar que la demostración de Silverman acerca de estrategias vencedoras para el segundo jugador en las partidas de «Connecto» deja de ser válida en otras disposiciones regulares de puntos. Por ejemplo, sobre una red triangular, el primer jugador puede vencer siempre, completando un triángulo unitario a lo más tardar en su séptima jugada.

Nievergelt opina que el Connecto es aún más interesante sobre otras retículas de tipo diferente, y en concreto se pregunta de quién puede ser la victoria sobre una malla cúbica. «Sería interesante, dice, que alguien lograse dar condiciones definibles en términos de teoría de grafos que permitieran clasificar los grafos regulares infinitos según que el primer jugador consiga o no imponer un circuito cerrado».

Soluciones

El rompecabezas de David Silverman se resuelve observando que todo jugador que gane una partida de Connecto ha de tener forzosamente dos cerillas que formen la letra L en la frontera de su región. El segundo jugador puede impedir que venza el primero -cualquiera que sea el tamaño del tablero- sin más que impedir que su contrario forme una L. Si el primer jugador ocupase la barra vertical de una posible L, el segundo respondería trazando la correspondiente barra horizontal; y si el primero dibujase la barra horizontal, el segundo formaría la vertical. Con esta estrategia el segundo jugador tiene garantizado, como mínimo, un empate.

index-27_1.png

En la Figura 16 pueden verse las soluciones de los seis pasatiempos con cerillas; algunos lectores descubrieron una segunda solución para el quinto: el VI del primer miembro se transforma en un XI, que es equivalente, en cifras romanas, al 11

arábigo que figura en el segundo.

Capítulo 3

Esferas e hiperesferas

«¡Mamá, mamá! ¿Por qué al andar no hago más que dar vueltas?»

«Niño, sí no te callas te clavo al suelo el otro pie. »

Chiste negro, hacia 1955

Una circunferencia es el lugar geométrico de todos los puntos del plano que se encuentran a distancia dada de un punto fijo. Generalizando esta definición a los espacios euclídeos de dimensión cualquiera, llamaríamos esfera general en dimensión n (o más brevemente, n-esfera) al conjunto de todos los puntos del espacio n-dimensional que se encuentran a distancia dada de un punto fijo del espacio. En los espacios de dimensión uno (las rectas) la 1-esfera está formada por dos puntos situados a una distancia dada, uno a cada lado de un punto central. La 2-esfera no es sino la circunferencia, y la 3-esfera, la figura que ordinariamente llamamos esfera. Conforme aumenta la dimensión tenemos las hiperesferas correspondientes a dimensión 4, 5, 6, ...

Imaginemos una varilla de longitud unidad con un extremo ligado a un punto fijo. Si sólo permitimos que la varilla gire sobre un plano, su extremo libre trazará una circunferencia de radio unidad. Dejando en libertad la varilla para voltear en el espacio tridimensional, su extremo describirá una superficie esférica. Supongamos ahora que el espacio tuviese un cuarto eje de coordenadas que cortase en ángulo recto a los otros tres, y que la varilla tuviera libertad para girar en el espacio tetradimensional. Su extremo libre engendraría entonces una 4-esfera unitaria. Es imposible visualizar hiperesferas; empero, sus propiedades pueden estudiarse mediante una sencilla generalización de la geometría analítica, extendiéndola al caso de más de tres coordenadas.

La ecuación canónica de una circunferencia es a2 + b2 = r2, donde r representa el radio. La ecuación de la esfera es a2 + b2 + c2 = r2. Para la 4-esfera la ecuación sería a2 + b2 + c2 + d2 = r2, y así sucesivamente al ir ascendiendo la escala de los hiperespacios euclideos.

La «superficie» de una n-esfera tiene dimensionalidad n-1. La «superficie» de un círculo es una línea de una dimensión, la superficie esférica es bidimensional, y la superficie de una 4-esfera es tridimensional. ¿Sería posible que el espacio tridimensional fuese en realidad la hipersuperficie de una gigantesca 4-esfera?

¿Podrían transmitirse mediante vibraciones de semejante hiperesfera fuerzas tales como la gravedad y el electromagnetismo? Muchos matemáticos y físicos de finales del siglo pasado, tanto ortodoxos como iconoclastas se tomaron en serio esta conjetura. El propio Einstein sugirió la superficie de una 4-esfera como modelo del universo, que sería de esta forma ilimitado y al mismo tiempo, finito. Imaginemos que la superficie de una esfera esté habitada por «planilandeses» bidimensionales.

Al viajar éstos por la esfera, siguiendo la línea «más recta posible» en una dirección cualquiera, acabarían retornando al punto de partida. Análogamente (sugería Einstein), si una nave espacial partiese de la Tierra y viajase durante suficiente tiempo, siempre en la misma dirección, al cabo retornaría a la Tierra. Un planilandés que fuese pintando la superficie de la esfera que habita, trazando círculos concéntricos cada vez más amplios, alcanzaría un punto medio a partir del cual los círculos comenzarían a decrecer, encontrándose él hacia el interior, y finalmente, el pintor tendría que pintarse a sí mismo, encerrado en un punto. Análogamente, en el cosmos de Einstein, si los astronautas terrestres empezasen a «cartografiar» el universo, proyectándolo sobre esferas concéntricas siempre en aumento, acabarían en último extremo encerrados en un pequeño espacio globular, en el polo de la hiperesfera diametralmente opuesto a la Tierra.

Muchas otras propiedades de la hiperesfera son justamente las que podríamos esperar por analogía con esferas de orden inferior. Una circunferencia puede girar alrededor de un punto, el centro; una esfera, alrededor de una recta (un eje), y una 4-esfera puede girar alrededor de un plano que contenga a su centro. En general, el eje de una n-esfera giratoria es un espacio de dimensión n-2. (No obstante, la 4-esfera puede efectuar una doble rotación muy peculiar, que no tiene analogía en los espacios de dimensiones 2 ó 3; puede girar simultáneamente sobre sí misma alrededor de dos planos fijos mutuamente perpendiculares.) La proyección de una circunferencia sobre una recta de su mismo plano es un segmento, si bien todo punto del segmento, exceptuados los extremos, se corresponde con dos puntos de la circunferencia. Proyectando una esfera sobre un plano resulta un disco, siendo cada punto interior del disco proyección de dos puntos de la esfera. Al proyectar una 4-esfera sobre nuestro 3-espacio se obtiene una bola maciza, y cada uno de sus puntos interiores es proyección de dos puntos de la superficie de la hiperesfera. Este resultado se generaliza a todos los espacios de dimensión superior.

Otro tanto puede decirse para las secciones transversales. Al cortar una circunferencia con una recta, la intersección es una 1-esfera, esto es, un par de puntos. Al cortar una esfera con un plano la sección producida es una circunferencia.

Cortando una 4-esfera con un hiperplano (de dimensión 3) la sección resultante es una 3-esfera. (Es imposible dividir en dos una hiperesfera cortándola con un 2-plano.

Una hipermanzana, pasada de parte a parte por un plano bidímensional, permanece de una pieza.) Imaginemos una 4-esfera que fuera atravesando lentamente nuestro espacio. La veríamos aparecer como un punto y en seguida transformarse en una bolita que progresivamente iría engordando hasta su máxima sección, para ir luego adelgazando hasta esfumarse.

Una esfera de dimensión cualquiera, construida con material lo suficientemente flexible, puede ser siempre vuelta del revés, de adentro a afuera, sumergiéndola en el espacio de dimensión inmediatamente superior. De igual forma que nosotros podemos retorcer un delgado aro de goma hasta que su cara interior pase a ser exterior, y recíprocamente, también una hipercriatura podría asir una de nuestras pelotas de tenis y volverla, como un guante, del revés, manipulándola a través del hiperespacio. Y podría hacerlo de una sola maniobra o también comenzando por un punto de la pelota, irla volviendo del revés a partir de él, hasta dejar toda la bola con el interior expuesto al exterior.

Entre las fórmulas que es posible generalizar fácilmente a esferas de dimensión arbitraria, una de las más elegantes es la que relaciona los radios del número máximo de esferas n-dimensionales mútuamente tangentes. En el plano es imposible situar más de cuatro circunferencias de forma que cada una toque a las demás, sienáo tangente cada par en un punto diferente. Hay dos situaciones posibles (dejando aparte casos degenerados, donde una de las circunferencias es de radio infinito, convirtiéndose así en una línea recta): o bien tres circunferencias

index-30_1.png

rodean a una cuarta, menor, ( Figura 17, izquierda), o bien tres están contenidas en la cuarta ( Figura 17, derecha).

Frederick Soddy, químico inglés descubridor de los elementos isótopos (lo que le valió el premio Nobel), expresó este hecho como sigue, en la primera estrofa de su poema The Kiss Precise publicado en la revista Nature (el 20 de junio de 1936, p.

1.021), y aquí traducido con alguna impertinencia:

Pueden besarse los labios, dos a dos,

sin mucho calcular, sin trigonometría;

mas ¡ay! no sucede igual en la Geometría,

pues si cuatro círculos tangentes quieren ser

y besar cada uno a los otros tres,

para lograrlo habrán de estar los cuatro

o tres dentro de uno, o alguno

por otros tres a coro rodeado.

De estar uno entre tres, el caso es evidente

pues tres veces son todos besados desde afuera.

Y el caso tres en uno no es quimera,

al ser este uno por tres veces besado internamente.

En la siguiente estrofa de su poema, Soddy da la sencilla fórmula que relaciona los radios de los círculos. La curvatura es la inversa del radio; así, un círculo de radio 4

tiene curvatura 1/4. Cuando un círculo es contactado desde su interior, como le sucede al círculo grande que contiene a los otros tres, se dice que su curvatura es cóncava, y a tal curvatura se le atribuye signo negativo. Así dice Soddy en su segunda estrofa:

Cuatro círculos llegaron a besarse,

cuanto menores tanto más curvados,

y es su curvatura tan sólo la inversa

de la distancia desde el centro.

Aunque este enigma a Euclides asombrara,

ninguna regla empírica es necesaria:

al ser las rectas de nula curvatura

y ser las curvas cóncavas tomadas negativas,

la suma de cuadrados de las cuatro curvaturas

es igual a un medio del cuadrado de su suma.

Denotando a, b, c y d los recíprocos de los cuatro radios, la fórmula de Soddy es 2( a2 + b2 + c2 + d2) = ( a + b + c + d)2. El lector no deberia ya tener dificultad en calcular el radio del cuarto circulo osculatriz de cada ilustración. En la tercera y última estrofa del poema de Soddy, la fórmula es generalizada a cinco esferas mutuamente osculatrices:

Espiar de las esferas

los enredos amorosos

pudiérale al inquisidor

requerir cálculos tediosos,

pues siendo las esferas más «corridas»

a más de un par de pares

una quinta entra en la «movida».

Empero, siendo signos y ceros como antes

para besar cada una a las otras cuatro.

El cuadrado de la suma de las cinco curvaturas

ha de ser triple de la suma de sus cuadrados.

En el número del 9 de enero de 1937 (Vol. 139, pág. 62), la redacción de Nature acusaba recibo de varias cuartas estrofas que generalizaban la fórmula de Soddy a espacios n-dimensionales, aunque publicó solamente la que sigue, debida a Thorold Gosset, abogado inglés aficionado a las matemáticas.

No debemos empero confinar nuestros cuidados

a los simples círculos, esferas y planos,

sino elevarnos a n-espacios e hipercurvaturas

donde también las múltiples tangencias

son seguras.

En n-espacios, los pares de tangentes

son hiperesferas, y es verdad

-mas no evidente-

cuando n + 2 de tales se osculean

cada una con n + 1 compañeras

que el cuadrado de la suma de todas las curvaturas

es n veces la suma de sus cuadrados.

index-32_1.png

Dicho en prosa simple y llana, en el espacio n-dimensional el máximo número de hiperesferas mutuamente tangentes es n + 2, y al multiplicar por n la suma de los cuadrados de todas sus curvaturas resulta el cuadrado de la suma de las curvaturas.

Más tarde se ha sabido que la fórmula correspondiente a cuatro circunferencias era ya conocida por Descartes, pero Soddy la redescubrió y, según parece, fue el primero en generalizarla para esferas.

Vale la pena notar que la fórmula general es aplicable incluso a tres «esferas»

bipuntuales del espacio unidimensional que sean mutuamente tangentes: dos segmentos de recta que se tocan, «dentro» de un tercero que es la suma de ambos.

Para los aficionados a las matemáticas recreativas, la fórmula de Descartes-Soddy es un auténtico don del cielo. Casi todos los problemas sobre círculos o esferas mutuamente tangentes ceden pronto frente a ella. He aquí uno muy bonito. Tres pomelos perfectamente esféricos, todos de 3 cm de radio, descansan sobre un mostrador plano. También sobre el mostrador, pero debajo de los pomelos y tangente a ellos, se tiene una pequeña naranja perfectamente esférica. ¿Qué radio tendrá la naranja?

En cambio, los problemas sobre empaquetamiento de esferas unitarias no admiten generalizaciones sencillas al ir ascendiendo por el escalafón de espacios de dimensión cada vez mayor; en realidad, se tornan cada vez más dificiles. Tomemos por ejemplo el problema de hallar el número máximo de esferas unitarias que pueden ser tangentes a otra esfera unitaria también. Para circunferencias tal número es seis ( véase la Figura 18).

Para esferas ordinarias es 12, pero no pudo probarse que así fuera hasta 1874. La dificultad se debe a que al colocar 12 esferas en torno a una decimotercera, con sus

index-33_1.png

centros en los vértíces de un icosaedro imaginario ( Figura 19), entre cada par de esferas queda espacio vacío.

El espacio vacío es ligeramente superior al necesario para alojar una décimotercera admitiendo que fuera posible desplazar adecuadamente las 12 primeras,

manteniendo el contacto y el empaquetamiento. Sí el lector se toma la molestia de bañar de goma arábiga 14 pelotas de pin-pong, verá que puede fácilmente adherir a una de ellas otras 12, no estando claro si se podrá o no incluir una más sin forzarlas ni deformarlas indebidamente. He aquí una cuestión equivalente (¿sabrá el lector explicar por qué?): ¿podremos pegar sobre una esfera 13 discos de papel, que cubra cada uno un arco de 60 grados de un círculo máximo, sin que se traslapen unos con otros?

H. S. M. Coxeter, al escribir sobre «The Problem of Packing a Number of Equal Nonoverlapping Circles on a Sphere» (en Transactions of the New York Academy of Sciences. Vol. 24, enero de 1962, pp. 320-31), cuenta la historia de la que podría ser la primera discusión documentada sobre el problema de las 13 esferas. David Gregory, astrónomo en Oxford y amigo de Isaac Newton, anotó en su diario, en 1694, que Newton y él habían estado discutiendo sobre la cuestión. Habían empezado estudiando cómo están distribuidas por el firmamento las estrellas de distintas magnitudes, y de ahí habían pasado a preguntarse si una esfera de radio unitario podría o no estar en contacto con otras 13 iguales a ella. Gregory opinaba que sí; Newton disentía. Como escribe Coxeter, «tuvieron que transcurrir 180 años hasta que R. Hoppe logró demostrar que Newton tenía razón». Desde entonces han sido publicadas otras demostraciones más sencillas, la más reciente, en 1956, la del matemático británico John Leech.

¿Cuántas hiperesferas unitarias del espacio tetradimensional pueden ser tangentes a otra de su mismo tamaño? Se desconoce todavía si la solución será 24, 25 ó 26.

Tampoco se conoce la respuesta en ninguno de los espacios de dimensión superior.

Lo único que se sabe es cuáles son los empaquetamientos más densos para espacios de dimensiones de 4 a 8, suponiendo que los vértices de las hiperesferas definan retículas regulares. De tales empaquetamientos resultan las cotas inferiores 24, 40, 72, 126 y 240 para los números de esferas en contacto con otra dada. De no estar sujetos a empaquetamientos «regulares», se ha conjeturado que las cotas superiores correspondientes son 26, 48, 85, 146 y 244. En los espacios de dimensión mayor que 8, ni siquiera se conocen los empaquetamíentos regulares de densidad máxima. Admitiendo que los centros no formen retículos regulares, Leech y N. J. A.

Sloane informaron en 1970 de que sí es posible hacer que 306 esferas iguales contacten con otra idéntica en dimensión 9, y de que 500 lo hagan en dimensión 10.

(Las cotas superiores correspondientes son 401 y 648.)

¿Por qué esa dificultad en el espacio de dimensión 9? Tal vez podamos arrojar un poco de luz -pálida luz- sobre los curiosos giros y recovecos que presenta el espacio de dimensión 9 examinando ciertas paradojas relativas a hípercubos e hiperesferas. En un cuadrado de lado unidad podemos alojar, yendo desde un vértice hasta el diagonalmente opuesto, un segmento de longitud 2 . Análogamente, en un cubo de lado unidad podemos encajar un segmento de longitud 3 . La distancia máxima entre dos vértices de un n-cubo unitario es de n y como las raíces cuadradas crecen sin límite, resultará que una varilla de longitud dada, por grande que sea, cabrá en el seno de un n- cubo unitario, con tal de tomar n suficientemente grande. Una caña de pescar de 5 metros de larga cabe, sin plegarla, en el hipercubo unitario del espacio de dimensión 25. Y otro tanto puede decirse para objetos de más de una dimensión. Así, un cubo es capaz de alojar cuadrados más grandes que su cara. Un 4-cubo puede acomodar en su interior cubos tridimensionales mayores que su hipercara cúbica. Un cubo del espacio de dimensión 5 dará cabida en su seno a cuadrados y cubos mayores de los que cabrían en otros cubos de igual arista pero menor dimensionalidad. Un elefante -o si se quiere, una catedral- cabe con holgura en un cubo n-dirnensional cuyas aristas no sean mayores que las de un terrón de azúcar... con tal de que n sea suficientemente grande.

Mas la situación cambia de raíz para las n-esferas. Por muy grande que sea n, jamás podrán las n-esferas acomodar varillas de longitud mayor que el doble de su radio. Y al mismo tiempo sucede algo muy curioso con su volumen (o hablando propiamente, con su contenido n-dimensíonal) al ir creciendo la dimensión n. La superficie del círculo de radio 1 es, evidentemente, π . En el espacio tridimensional, el volumen de la esfera de radio 1 es 4,1 + . El hipervolumen de la 4-esfera es 4,9 +. En el espacio de dirnensión 5

el volumen es aún mayor, 5,2 +. Pero en el espacio de dimensión 6 el hipervolumen es

index-35_1.png

de sólo 5,1 + , y a partir de ahí, continúa decreciendo sistemáticamente, tanto así, que cuando n tiende a infinito, el hipervolumen, de la n- esfera unitaria tiende a cero. Se siguen de aquí resultados que podríamos calificar de «extraterrestres». David Singmaster, escribiendo sobre «Piezas redondas en agujeros cuadrados, y piezas cuadradas en agujeros redondos» («On Round Pegs in Square Holes and Square Pegs in Round Holes», Mathematics Magazine, (vol. 37, noviembre de 1964, pp. 335-37) llegó a la conclusión de que las piezas redondas encajan mejor en agujeros cuadrados que a la inversa, porque la razón de la superficie del círculo a la de su cuadrado circunscrito ( π /4) es mayor que la razón del cuadrado inscrito al círculo que lo contiene (2/ π ).

Análogamente, podemos demostrar que una bola encaja mejor en una caja cúbica que un cubo en un envase esférico, si bien la diferencia de los cocientes es algo menor.

Singmaster descubrió que la diferencia sigue decreciendo hasta los espacios de dimensión 8; a partir de ahí se cambian las tornas, y en el espacio de dimensión 9 la razón de la n-bola al n-cubo es menor que la relación del n- cubo a la n- bola. Dicho de otra forma, la condición necesaria y suficiente para que una n-bola esté mejor envasada en un n-cubo que un n-cubo en una n-bola es que n sea menor o igual que 8.